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ABSTRACT

 Chemical kinetic characteristics of real fuels exhibit high-dimensional complexity 

due to the excessive number of molecules and molecular classes. As a method of 

projecting this high-dimensional complexity, which is pertinent to real fuels, to the low-

dimensional description, either a surrogate approach or detailed experiments have been 

utilized, can guide the construction of chemical kinetic models for real fuel. Although the 

validity of the surrogate approach has been extensively demonstrated by a wide range of 

canonical experiments for whole fuel/air mixtures, the use of empirical fuel property 

indicators still worries whether or not the surrogate mixture truly captures the more 

complex chemical behaviors coupled with fuel physical properties (e.g. distillation). 

Particularly, a recent experiment has shown that the near-limit combustion behaviors (e.g. 

lean blow off in gas turbine combustor) are strongly governed by the chemical 

characteristics of the front (light) end in fuel boiling characteristics. Thus, it is of 

importance to develop an alternative approach, which can fundamentally characterize 

fuel chemical properties along the fuel distillation curve. Using Nuclear Magnetic 

Resonance (NMR) spectra, it is possible to quantify the specific chemical functional 

groups present in a sample. To demonstrate the applicability of chemical functional group 

approach in conjunction with NMR spectra interpretation, a surrogate formulation 

approach based on NMR spectra is demonstrated by using a 12-component model fuel 

and a known fuel and comparing the synthetic NMR spectra between target fuels and 

surrogate mixtures. 
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CHAPTER 1 

INTRODUCTION

 For the past 100 years, the combustion of fossil fuels have been the dominate source 

of the worlds energy. [1] Fossil fuels is the overarching term that has been given to many 

non-renewable sources of fuels which include coal, petroleum, and natural gas. Figure 1.1 

shows a chart of how the US has historically generated energy and it is clear since the very 

beginning that combustion has been the primary source.[1] As the US shifted from wood 

to various fossil fuels, it enabled a large increase of the amount of energy generated. 

But as fossil fuels became more widespread, depletion became a concern for many.  

The world has a limited supply of fossil fuels and fossil fuels produce greenhouse gases 

which contribute to climate change therefore societies started searching for alternative 

sources to meet the demand for energy. This interest in alternative and renewable fuels 

have led to several major methods of producing energy such as biofuel, solar, wind, tidal, 

geothermal, nuclear, and hydroelectric methods. The chart in Figure 1.2 shows a 

breakdown of U.S. energy consumption by energy source in 2017. Roughly 80% of all of 

the energy consumed in the US that year was from of fossil fuels.[2] This amount is not 

predicted to decrease anytime in the next several decades. Because such a large portion of 

the US energy comes from fossil fuels, there is a significant need to understand and 

improve upon how fossil fuels are used. 
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Figure 1.1: History of How the US Has Generated Energy 
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Figure 1.2: How the US Currently Generates Energy 

 



www.manaraa.com

 

 

4
 

 

Figure 1.3: How the US Uses Energy 
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The bar graph shown in Figure 1.3 shows how much energy each sector of society 

is using as well as which methods of energy generation they use. Certain sectors severely 

limited by which methods they can use such as transportation. Of all the energy used by 

the transportation industry, 96% comes from petroleum products.[2] 

As much of the infrastructure and operating devices in the US are designed to use 

fossil fuels in the combustion process, there is interesting in switching to biofuels they use 

the existing infrastructure while decreasing the fossil fuel consumption rates. Biofuel falls 

somewhere in between renewable energy and fossil fuels, so it is better classify them as an 

alternative fuel. Biofuel is the product of producing fuels from the biological waste of many 

different products such as corn husks or used frying oil. 

Renewable energy sources such as solar, wind, and tidal energy all rely on 

converting the Earth’s energy directly to electrical energy using solar panels, or wind/sea 

turbines. While these methods may produce renewable energy, currently they cannot 

replace all fossil fuel usage as their ability to generate energy fluxgates with the weather 

patterns. Geothermal energy, on the other hand, uses the heat from the Earth’s crust to 

produce steam for a turbine plant. Geothermal plants can produce very consistent levels of 

energy but are limited by suitable location. Similarly, hydroelectric methods can generate 

significant amounts of electricity at very consistent levels but cause substantial changes to 

the ecosystem. Nuclear energy can meet the demand for electricity with a significant 

environmental impact, long term storage of nuclear waste. These are alternatives to fossil 

fuels that can meet energy needs in very specific ways but none of them are substantial 

alone and are best used in tandem with fossil fuels.



www.manaraa.com

 

6 

The issues with renewable energy sources mean that fossil fuels will continue to be 

used for a large portion of our energy needs for the foreseeable future.[1] Fossil fuels do 

have their own issues, which consist of emissions, cost, efficiency, and their limitations. 

Emissions from fossil fuels can have a major impact on the environment contributing to 

climate change, smog, and acid rain. In the ideal combustion process, the only products are 

Carbon Dioxide (CO2) and Water (H2O). Carbon Dioxide is a contributor to climate change 

as it is a greenhouse gas that traps heat in the atmosphere warming the environment. In the 

real-world applications, there are other particulates that are produced such as Carbon 

Monoxide (CO), Nitric Oxide (NO), and Nitrogen Dioxide (NO2). Carbon Monoxide is 

poisonous and can contribute to the production of stronger greenhouse gases. Nitric Oxide 

and Nitrogen Dioxide are very reactive and are major contributors to acid rain. Very strict 

regulations have been implemented to release as few of these particulates as possible 

because of these chemicals and soot. Even though fossil fuels are the cheap for the 

consumer, they are still expensive because of the refining process. The large cost associated 

with generating energy is still a very important factor driving innovation to look for cheaper 

solutions with more efficiency. Just like the rest of the methods of energy generation, fossil 

fuels have their own limitations. Some of these limitations include strict operating 

conditions for engines and that the vehicle must carry all the fuel needed.  

Most motor vehicles, including airplanes, are powered by fossil fuels and rely on 

many different types of petroleum derived fuel. In Figure 1.3 shown previously, the 

transportation sector primarily uses petroleum and natural gas with a slight portion of the 

energy coming from various renewable sources. Even for electric vehicles, the primary 

source of energy comes from the fossil fuel methods as they are the largest producer of 
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energy in the US. These electric vehicles generally have very similar effects on the 

environment as the traditional internal combustion engine vehicles do. This is due to the 

fact that the electrical grid is primarily fossil fuel powered and unless renewable energy 

power generation is increased these vehicles will continue to essentially be powered by 

fossil fuels.  

After the engine has been designed and produced there is little that can be done to 

adjust the operating envelope other than changing the properties of the fuel used in the 

engine. The process for certifying new fuels for the highly complex aircraft and turbine 

engines is extremely expensive and extensive.[3] Due to this high cost, it is preferred to 

model the fuels and engines first to determine the performance and emissions in order to 

get a first judgement.  

Modeling fuels with engines is a practical way to predict whether a design should 

be reworked or tested as it requires substantially less time and money to model than to 

experimentally test. While modeling is strongly preferred, it has limitations due to chemical 

complexity, the limitations of modern computing, and the fact that many of the chemical 

properties are linked to mechanical properties. A chemical kinetic model is a list of all 

chemical reactions and how they occur for every molecule in the fuel and is what is used 

in the modeling process. Real petroleum derived fuels are extremely chemically diverse 

and contain thousands of unique chemical species. The chemical kinetic models of these 

fuels are extremely large due to the enormous number of reactions that can happen.  

These large chemical kinetic models are extremely taxing on the computational 

resources and are often much to massive to use the entire kinetic model. Typically, these 
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chemical kinetic models are used to generate what are called reduced kinetic models which 

only consist of the most important reactions to drastically reduce the size. These reduced 

kinetic models are still large and can be a significant drain on computational power. 

Because these reduced kinetic models still use such a large amount of computer resources, 

there is a substantial interest in decreasing the sizes of these models. One way that this has 

been done is through compact kinetic models which typically only consist of the most 

dominant molecules in the fuel. One issue with modeling fuels using the compact kinetic 

model approach is that many of the chemical properties are coupled with mechanical ones. 

The fact that they are coupled means that once the mechanical properties change, the 

chemical properties changes as well. This coupling leads to problems with the compact 

kinetic models replicating all the properties especially when physical environment can 

change.  

Chemical and mechanical coupling along with needing smaller sizes of chemical 

kinetic models have led to new solutions, one promising method is surrogate fuels. 

Surrogate fuels are specific mixtures of a few chemicals that accurately reproduce targeted 

properties of the real fuel of interest.[4-21] They can be created with as few as one 

component which means the chemical kinetic models generated from them are useable 

sizes and can be formulated to consider the mechanical and chemical coupling effects. [10]
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CHAPTER 2 

THEORY

Surrogate fuels are mixtures of chemicals that  reproduce the selected behaviors of 

real-world fuels.[4-21] These are extremely useful when modeling multi-component fuels 

such as petroleum derived fuels. The kinetic models of multi-component fuels are larger 

than those of single component fuels as there are more species that need to be considered. 

The interactions between components in mixtures are important to representing the 

behavior of real fuels in a model. When compact kinetic models are created, some of these 

interactions can be lost which can result in slightly different combustion behaviors. [20]   

When formulating surrogate fuels, multiple components are used to match the 

combustion behaviors of interest.[4-22] The fact that these mixtures consist of multiple 

components allows for the interactions between different chemicals to occur and can better 

represent the target fuel than a single component representation . The chemical kinetic 

models for these multi-component surrogate fuels are significantly smaller than those of 

real fuels. This major reduction in size of chemical kinetic models comes from the fact that 

real fuels are extremely chemically diverse and contain hundreds if not thousands of 

different chemical species that all interact with each other to form new species that must 

be considered in the full-size kinetic model.  

All these chemical species that are present in real fuels can be sorted into categories 

of types of chemicals. The main categories are known as n-alkanes, iso-alkanes, cyclo-
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alkanes, and aromatics or phenol groups. There are a handful of others that are not nearly 

as prevalent and have been excluded. Out of these chemical types, n-alkanes are the most 

understood and consist of a linear chain of carbon atoms with hydrogen filling in the rest 

of the bonds. Iso-alkanes are branching chains of carbon atoms that are surrounded by 

hydrogen atoms. Aromatics and phenol groups are well understood and consist of anything 

with at least one benzene like ring in the molecule. The last major group of chemicals are 

what is known as cyclo-alkanes. Cyclo-alkanes are made up of rings of carbon atoms that 

all have single bonds. Cyclo-alkanes are not understood very well and have widely been 

ignored in previous research due to reduce reactivity of the cyclo-alkanes compared to that 

of n-alkanes.[23]   Many of the new specialized jet fuels have larger quantities of cyclo-

alkane structures and which generate a need to better understand cyclo-alkanes.[20, 23] 

When formulating surrogate fuels, it is important to have components that can represent 

each of these groups as they all have special attributes that may need to be accounted for. 

All these chemical structures can be broken down further to what are known as chemical 

functional groups. Functional groups are the categories which categorize specific groups 

of atoms within molecules and describe how the individual atoms in a molecule are bonded. 

It is known that the same functional group will undergo very similar reactions no matter 

what molecule it is part of. 

  Surrogate fuels use only a handful of chemical species to reproduce the 

combustion behaviors and as such this significantly simplifies the chemistry from 

extremely complex real fuels to manageable for the surrogate fuels. Many of the very 

complex chemical structures that are present in real fuels react in similar manners and 

because of this, the chemistry can be reconstructed using simpler models that will react the 
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same.[8-11, 21-23] There are many different methods of formulating surrogate fuels with 

a large majority of them being highly empirically based. These empirical methods test the 

real fuel for what are known as Combustion Property Targets (CPT’s) and then rely on the 

developer to determine which ones are the most important to be matched for the 

situation.[4-21] 

There are many different groups using these CPT methods with some of the various 

CPT’s being flash point (FP), various ignition and extinction characteristics, sooting 

propensity using a variety of methods, and various emissions profiles.[4, 5, 7-21, 24] Many 

of these methods only used one or two CPT’s and found that even though their surrogate 

fuels match the specified CPT’s, they tend to not match other CPT’s as well. Past work 

from Won et. Al used these CPT methods as well but chose to use four CPT’s to better 

represent the overall target fuel.[7-9, 11, 21, 25] One of the major issues with the CPT 

method of surrogate formulation is  they typically reproduce the chemical properties or the 

physical properties of the target fuel but  fall short when both are evaluated together. The 

surrogate fuels that only account for the chemical properties can still correctly predict the 

reaction mechanisms of the real fuel under the correct circumstances.  

A common assumption during the modeling process is to assume that the fuel is 

completely vaporized before reacting in which case the physical properties of the fuel are 

negligible. Recent research has shown this assumption of the fuel being prevaporized does 

not always hold true, especially when in the near limit operating conditions[26-28]. 

Furthermore, research also suggests that some of these near limit conditions, such as lean 

blow-out (LBO), are governed by preferential vaporization.[10] Preferential vaporization 

occurs in real fuels that are injected in liquid state and is due to the components of the fuel 
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having substantially different vapor pressures which causes some components to vaporize 

sooner. Figure 2.1 shows the impact that preferential vaporization can have on DCN for 

several real fuels. These real fuels were separated into 20% bins or cuts by distilling so that 

the extent of preferential vaporization could be seen. This variance in DCN for each fuel 

was than analyzed by taking the maximum difference between bins and dividing them by 

the DCN for the overall fuel which can be seen in Figure 2.2. From Figures 2.1 and 2.2, it 

is very clear that preferential vaporization can have monuments impacts on the fuels but 

not all fuels experience the same impacts of preferential vaporization. 

The CPT’s that were chosen by Won et. Al are the derived cetane number (DCN), 

sooting propensity measured through the threshold sooting index (TSI), the molecular 

weight (MW), the Hydrogen to Carbon ratio (H/C), and parts of the distillation curve (T10, 

T50, T90) so that the surrogates adequately capture the combustion behaviors of the target 

fuel.[7-9, 11, 21, 23, 25] When the DCN, MW, H/C and TSI are all used in conjunction the 

chemical properties of the fuel are correctly reproduced but the physical properties are not. 

The distillation curve needs to be considered to account for the volatility and preferential 

vaporization of the fuel which will enable the replication of the physical properties.  

While investigating the potential surrogate fuels that fit all these constraints, it was 

seen that the number of CPT’s used limits the combinations for the chemical functional 

group distribution. It is known that chemical functional groups react the same no matter 

what molecule they are part of, and because of this, they dictate the values of CPT’s. 

Naturally, this begs to question is it possible to formulate a surrogate from the chemical 

functional group distribution? The first step to answering this question is to decide how to 

determine the chemical functional groups of the target fuel.  
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Figure 2.1: Effects of Preferential Vaporization on DCN 
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Figure 2.2: Preferential Vaporization Potential 
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There are several different ways that the functional groups can be determined using 

direct and indirect methods. Cooney et. Al used a decomposition method to determine the 

surrogate components and extrapolate the functional group distribution from the 

components[5]. The method that they used is further modified in a hybrid-based scheme to 

account for preferential vaporization using a chemical surrogate and a physical surrogate 

that are combined. Another more direct method of determining the functional group 

distribution is with Nuclear Magnetic Resonance (NMR). [22, 24, 29-31] 

Nuclear Magnetic Resonance is a method of determining the chemical functional 

groups that are present in a mixture. Traditionally NMR operates using a liquid sample that 

is exposed to a high strength electromagnetic field. When the electromagnetic field is 

activated, certain atomic nuclei align with or against the direction of the field. The reaction 

of the nuclei is then recorded and analyzed to determine the functional groups. Atoms are 

made of protons, neutrons, and electrons and have respective electrical charges of positive, 

neutral, and negative. The actual charge depends on what chemical element the atom is 

with certain elements being more electronegative.  

Elements and atoms that are more electronegative are more likely to attract a 

bonding pair of electrons. This electronegativity is also influenced by if and how the 

individual atoms are bonded. If an atom with a small degree of electronegativity is bonded 

to an atom with high electronegativity, the electronegativity of the first atom will be 

influenced. In the presence of a magnetic field the direction that the nuclei align is relative 

to the electronegativity of the nuclei. Because the chemical functional groups are defined 

by the local atomic bonds, each type of functional group has its own electronegativity and 

responds to the electromagnetic field uniquely. When the functional group responds to the 
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field, the electronegativity of the group determines the strength of the reaction which can 

be characterized by the NMR analysis to determine the different functional groups.  

NMR is typically used in a qualitative manner to determine what functional groups 

are present but not necessarily how much of each group are there. However, when ran 

under certain parameters, the NMR analysis can take quantitative readings to accurately 

measure the functional group distribution. Because NMR excites the atomic nuclei, the 

probe can detect only one element at a time, which means the machine can measure either 

the functional groups from the 1H, or Hydrogen perspective, or the 13C, or Carbon 

perspective. 

Lyu et. Al uses 1H NMR to measure the chemical functional group distribution to 

produce a single molecule which matches the average functional group distribution of the 

fuel.[24] This method of producing surrogates would extremely simplify the complex 

chemistry issues of real fuels, but it would require a new chemical kinetic model for every 

fuel as every fuel would have a unique molecule. This method would also fail to match the 

physical properties of the fuel and could neglect the mechanical chemical coupling 

behaviors, such as preferential vaporization, that are prevalent. 

This has led to our group investigating the use of the distillation curve along with 

the chemical functional group distribution being used to formulate surrogate fuels. Because 

the chemical functional groups all react the same regardless of the molecule, and the CPT’s 

being a function of the reaction pathways, the functional group distribution should be 

enough to recreate the chemical properties of the fuel. Using the distillation curve in 

conjunction with the chemical functional group distribution will account for the chemical 
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properties, and the mechanical chemical coupling effects of the real fuel. To measure the 

chemical functional groups distribution using NMR the 1H spectrum is not enough as there 

can be slightly different functional groups that exhibit similar responses in the 1H spectrum 

so the 13C spectrum must be considered simultaneously. Using both the 13C and 1H 

spectra together allows for an adequate description of the chemical functional group 

distribution which enables all the functional groups of interest can be identified. By using 

a variety of simple components, the distillation curve can be reproduced as well as the 

chemical functional group distribution. Using simple components that have known 

chemical kinetic models allows for a combination of these models to represent the kinetic 

model of the target fuel. Using the NMR analysis to calculate the chemical functional group 

distribution also requires a very small sample, as little as 1 mL, to predict how the target 

fuel will react. This significant reduction in quantity needed to test the fuel allow for a 

significant cost reduction in the testing and certification of the target fuel.  

NMR spectra can be simulated extremely well for simple components and are 

completely quantitative and will be referred to as synthetic NMR spectra. The NMR spectra 

of a mixture are a function of the mole fraction of the components because the response is 

based on the number of moles present. To predict the NMR spectra of a known mixture, 

the spectra of the individual components can be weighted by their respective mole fraction 

to reproduce the spectra of the mixture. Using this knowledge, a surrogate fuel can be 

formulated that optimizes the mole fractions of chosen components to best reproduce the 

measured NMR spectra of the target fuel from the synthetic spectra of the components. The 

fact that this method can reproduce the chemical functional group distribution by 

optimizing the mole fractions of the mixture is beneficial because the distillation curve can 
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be found by using bubble temperature calculation which is dependent on the initial mole 

fractions of the mixture. The bubble temperature calculation and the matching of the NMR 

spectra by using synthetic spectra allows the optimization to determine the best mole 

fractions. 

As beneficial as surrogate fuels can be, the current methods have serious limitations 

with what they can predict and how well they can be modeled. This is because none of the 

current generation of surrogate formulation methods account for preferential vaporization. 

Another issue with the current generation of surrogate formulation methods is that the 

number of components that are used vary significantly.[4-21, 26, 28] The magnitude of the 

kinetic model for the surrogate fuel is largely dependent on the number of components. 

When formulating surrogates for many of the alternative or unique fuels the components 

will need to be changed, or tailored, to better suit the target fuel, but this is not a major 

issue if appropriate and well understood components are chosen.  
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CHAPTER 3 

METHOD 

 During this study, we used NMR to measure the chemical functional group 

distribution of the target fuel. NMR is typically operated qualitatively to detect what 

chemical functional groups are present in a sample, without consideration for the 

quantitative amount of each functional group present. Under certain conditions NMR 

analysis can obtain quantitative results and determine exactly how much of each functional 

group is present. A study that was published on NMR analysis of Diesel fuels from 2013 

performed quantitative NMR measurements on various diesel fuels and got results that 

were accurate within 2% of Carbon aromaticity.[29] The acquisition time for quantitative 

1H spectra was 3 seconds with an 8 second relaxation delay. For the 13C spectra, 

Chromium (III) acetylacetonate (CR(acac)3) was added as a relaxation agent to reduce the 

relaxation delay time to 5 seconds with a 3 second acquisition time. The CR(acac)3 was 

added until it reached 0.05 molarity in the sample. The solvent for this method is deuterated 

Chloroform, Chloroform-D or CDCl3 and is referenced at 77.20 ppm for the 13C spectrum 

and 7.26 ppm for the 1H spectrum. [29] 

 To calculate the distillation curve of a mixture, the bubble temperature can be 

determined. The bubble temperature is the temperature at which the mixture begins to boil. 

To calculate the bubble temperature, the vapor pressure of the individual components needs 
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to be known and this can be found using Antoine’s equation which can be seen in Equation 

10. The vapor pressure of the components can be multiplied by their respective mole 

fractions in the mixture and summed to determine the vapor pressure of the mixture. The 

mixture is said to be at the bubble temperature when the vapor pressure of the mixture is 

equal to the atmospheric pressure.  

 An optimization algorithm was used to determine a surrogate mixture that would 

reproduce the both the 1N and 13C NMR spectra and the distillation curve, for a best fit 

solution. One issue that needed to be addressed was the chemical diversity in real fuels.  

This diversity plays a large role in real fuels which create resolution issues that come from 

experimental measurements that result in a substantially loss of sharpness in the NMR 

spectra. This factor was mitigated by taking the cumulative integral across the domain of 

each spectra resulting in a significantly closer continuous curve. Using the cumulative 

integrated approach for both the synthetic component and measured spectra for the target 

fuels gives results which can be compared. All the cumulative integrated spectra were 

normalized to give the same location and height so that they could be fairly compared. The 

cost function for this optimization method is defined as: 

𝐺 = ∑|𝑒𝑞1| + |𝑒𝑞2| + |𝑒𝑞3| + |𝑒𝑞4| + |𝑒𝑞5| + |𝑒𝑞6|  (1) 

Where  

𝑒𝑞1 = ∑|𝐻𝐼𝑜 − 𝐻𝐼| ∗ 𝐻𝐼𝑜    (2) 

𝑒𝑞2 = ∑|𝐶𝐼𝑜 − 𝐶𝐼| ∗ 𝐶𝐼𝑜    (3) 

𝑒𝑞3 =
𝑇10−𝑇10𝑎

𝑇10𝑎
     (4) 
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𝑒𝑞4 =
𝑇20−𝑇20𝑎

𝑇20𝑎
     (5) 

𝑒𝑞5 =
𝑇50−𝑇50𝑎

𝑇50𝑎
     (6) 

𝑒𝑞6 =
𝑇90−𝑇90𝑎

𝑇90𝑎
     (7) 

 The terms in the above equations, HIo and CIo are the cumulative integrated 1H 

and 13C NMR spectra, respectfully, of the target fuel. HI and CI are the cumulative 

integrated synthetic spectra for the generated mixture where the original spectra can be 

computed using the below formulas where the Hi and Ci are the synthetic spectra of the 

individual components. 

𝐻 = 𝑥𝑖𝐻𝑖      (8) 

𝐶 = 𝑥𝑖𝐶𝑖      (9) 

 The method of calculating the distillation curve through the bubble temperatures 

used Antoine’s equation, Raoult’s Law, and Dalton’s Law. Antoine’s equation was used to 

calculate the vapor pressure of each component and can be found from Equation 10 

𝑃𝑣𝑎𝑝 = 𝑒𝐴+
𝐵

𝑇+𝐶     (10) 

Raoult’s Law allows for the calculation of the vapor pressure of the mixture which was 

said to bubble once the vapor pressure was equal to the atmospheric pressure. Raoult’s Law 

which is shown in Equation 11 states that the vapor pressure of a mixture is equal to the 

sum of the vapor pressure of each component multiplied by their respective mole fractions. 

𝑃𝑣 = ∑𝑥𝑖𝑃𝑣𝑎𝑝𝑖     (11) 
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Lastly, Dalton’s Law is used to calculate the gas phase mole fractions of the vapor above 

the liquid at the bubble temperature. The equation, shown in Equation 12, is used to 

determine how much of each component has vaporized and is defined as following: 

𝑃𝑡𝑜𝑡𝑎𝑙 = ∑𝑃𝑖      (12) 

 All these different pieces fit into the cost function G and the value for the number 

of moles of each component is determined using a minimax optimization approach. Several 

different optimization algorithms were investigated throughout this study and the minimax 

approach was selected due to this approach finding a significantly smaller error than other 

methods. This makes sense as the primary goal of the minimax algorithm is to minimize 

the maximum error of the cost function where many of the other methods solve for local 

minima and may not be the best approach when dealing with non-smooth error surfaces. A 

flowchart of this method can be seen for convenience in Figure 3.1. 
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Figure 3.1: Flowchart of Optimization Method 
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CHAPTER 4 

RESULTS

 To verify that this method could work, a known 12-component fuel was used to 

generate a synthetic 1H NMR spectrum and compute the distillation curve. This new 

spectrum and distillation curve were used as the target fuel in the optimization method to 

determine if it could be reproduced. It was determined that this “target fuel” could be 

reproduced exactly using this method but both the 1H NMR spectrum and the distillation 

curve were needed to create a unique solution since multiple mixtures were found to 

reproduce the NMR spectrum. Once this mixture was correctly matched, it was tested using 

Jet-A POSF 10325 and the mixture could not be properly replicate the CPT values of the 

real fuel. This lack of ability to constrain the mixture led to the inclusion of the 13C NMR 

spectra as one of the optimization targets.  

After the 13C spectra was added, this method was used on multiple fuels consisting 

of several petroleum derived real fuels and various alternative jet fuels. The first fuels 

tested were the alternative jet fuels that exhibit low preferential vaporization potential and 

lacked chemical diversity to evaluate the validity of this method. Next the alternative jet 

fuels that have substantially higher chemical diversity, but they still had significantly less 

diversity than petroleum derived fuels and varying amounts of preferential vaporization 

potential. The last fuels that were tested were the petroleum derived fuels as they have the 
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highest chemical diversity. This was done to determine the validity of this method and how 

well it can capture the larger number of species and preferential vaporization potential.  

The first fuel tested was Surrogate 1 which was calculated by Won et al.  [21] and 

mixed by the Air Force Research Lab as POSF 13376 so the exact mixture was known. 

The results of the optimization can be seen in Figures 4.1 and 4.2 which show the integrated 

NMR spectra of the generated mixture compared to that of Surrogate 1. Both integrated 

spectra were matched but because this is the cumulated integrated spectra, functional 

groups that occur near each other can be lost so the actual NMR spectra must be checked.  

The last target for the surrogate generation is the distillation curve which is shown 

in Figure 4.3. The distillation curve is calculated for the generated mixture then compared 

to the known temperatures of the real fuel. Because the only temperatures that are known 

for the target fuel are T10, T20, T50, and T90, they are represented as specific points as to 

get a truer representation.  Both 1H and 13C NMR spectra for the generated mixture and 

Surrogate 1 are shown in Figures 4.4 and 4.5. The proton spectrum of the real fuel is 

reproduced very well with a 0.067 percent difference. All the key functional groups that 

are of interest are well matched as well.  

Figure 4.5 shows the carbon spectrum of Surrogate 1 and the formulated surrogate 

mixture. While it is not reproduced as well, 2.31 % error, it still clearly captures the 

chemical functional groups present. The paraffinic groups are all very well reproduced 

along with most of the aromatic carbons present. The major differences between the target 

spectrum and the simulated spectrum are due to the limitations of real-world tests. In the 

real fuel spectrum, not all the quaternary aromatic carbons are observed as both carbon 
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Figure 4.1: Integrated 13C NMR Spectra of Surrogate 1 
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Figure 4.2: Integrated 1H NMR Spectra of Surrogate 1 
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Figure 4.3: Distillation Curve of Surrogate 1 
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Figure 4.4: 1H NMR Spectra of Surrogate 1 
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Figure 4.5: 13C NMR Spectra of Surrogate 1 
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peaks in the aromatic region which should be equal because of the chemicals present. The 

operating parameters of the tests were varied in an effort to observe all of these carbons. 

Since time is constrained on the machine, we could only increase the relaxation delay time 

to 90 seconds with very negligible benefits.  

Table 4.1 shows the CPT values that were predicted using a QSPR method and 

compares them to those found from the mixture of Surrogate 1 POSF 13376. These values 

in Table 4.1 show that the surrogate properly matched the CPT values of the target fuel and 

that this method can accurately reconstruct the Surrogate 1 mixture. The DCN for this 

surrogate was found to be within 1 DCN value of the target fuel while the MW was within 

4 g/mol. The H/C ratio differed from that of the target fuel by 0.021. This surrogate was 

formulated solely using the chemical functional group distribution and distillation curve 

and it was still able to predict the CPT values. Because the CPT values are almost identical 

with a maximum difference of 2.8 % error in the MW, it shows that this method can 

successfully formulate a surrogate fuel. 

After Surrogate 1 was successfully recreated, the algorithm was used on Gevo ATJ 

POSF 10151 as it is a simple mixture that lacks both chemical diversity and preferential 

vaporization potential. All the results for the distillation curve along with both integrated 

and standard NMR spectra can be seen in Figures 4.6-4.10. The distillation curve, in Figure 

4.6, is well fit and falls within 10 degrees of the actual measurements that were taken when 

distilling this fuel. Gevo ATJ is comprised primarily of highly branched isoalkanes that 

contain 12 and 16 carbons which exhibit unique placements in the NMR spectra. 
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Table 4.1: Generated Surrogate and CPT’s of Surrogate 1 
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Figure 4.6: Distillation Curve of Gevo ATJ 
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From Figures 4.7 and 4.8, the integrated NMR spectra show that the very distinct 

chemical functional groups from the isoalkane structures are captured in the mixture. The 

fact that the algorithm successfully matched the structures from the NMR spectra is a very 

big step for proving how versatile this method can be. But because these are just the 

integrated spectra and may attribute some of the structures to similarly placed chemical 

functional groups, the standard NMR spectra must be inspected as well and these can be 

seen in Figures 4.9 and 4.10.  Figure 4.9 shows the 1H spectra for the generated surrogate 

mixture and for the measured real fuel. Here it is clear that the basic structures are 

reproduced very well, with a 1.12 % error, but the 1H spectra only references the protons’ 

environments. There is are similar intensities for all of the key functional groups that we 

are interested in, primarily the CH3, CH2, CH, and Aromatic groups which show that this 

method is providing a good foundation for many of the chemical properties that are of 

interest. The quaternary carbon functional group, C, which is a carbon that is connected to 

four other carbons, is found in the 13C NMR spectrum which is shown in Figure 4.10. 

Along with information about the number of quaternary carbons present, the 13C spectrum 

gives insight about how the chemical functional groups are connected as it shows the 

carbons’ perspective which shows more overall structures. The 13C spectrum shown in 

Figure 4.10 has a 2.29 % error which shows that this method is viable for real fuels. 

Figures 4.9 and 4.10 shows the traditional NMR spectrum of the generated 

surrogate for Gevo ATJ along with the measured spectrum of the real fuel and it is clear 

that it is almost an exact match which shows that this method can successfully reproduce 

the chemical functional groups of this fuel. Because the chemical functional group 

distribution 
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Figure 4.7: Integrated 13C NMR Spectra of Gevo ATJ 
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Figure 4.8: Integrated 1H NMR Spectra of Gevo ATJ 
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Figure 4.9: 1H NMR Spectra of Gevo ATJ 
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Figure 4.10: 13C NMR Spectra of Gevo ATJ 
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was adequately reproduced through the NMR spectra and the distillation curve, the CPT 

values needed to be compared to determine if it is indeed a match. 

 The predicted CPT’s for the surrogate are shown in Table 4.2 along with the 

formulated surrogate. Except for the DCN, all of the CPT’s are very well predicted. The 

Molecular Weight of the generated mixture is only 2.5 g/mol lighter than the real Gevo 

ATJ. The H/C ratio is within 0.005 of the target mixture which shows that the chemical 

functional groups are truly represented properly. The predicted DCN of this surrogate is 

substantially higher solely due to the lack of ability of the QSPR model that was used to 

properly predict the DCN value for the low DCN fuels such as iC12 and iC16 which 

comprise most of the mixture. This QSPR model over predicts the DCN for these two 

components by the same difference as that of the surrogate model and the target fuel. 

Taking the limitations of the QSPR into account, all of the CPT’s match those of the target 

fuel within 1.43 % error not including DCN. These matched CPT’s were predicted using 

only the chemical functional group distribution and the distillation curve which shows that 

this method will work even for unknown mixtures. 

Now that this method has successfully generated surrogates for Surrogate 1 [21] 

and Gevo ATJ, the next step is to test with Shell SPK POSF 5729. Shell SPK is an 

alternative jet fuel that has substantially more chemical diversity than Gevo ATJ but still 

exhibits very little preferential vaporization potential. This was chosen as the next fuel to 

test as it will demonstrate whether or not this method will be able to simplify some chemical 

diversity while still constraining the preferential vaporization potential. The distillation 

curve for the surrogate that was generated can be seen in Figure 4.11. Because Shell SPK 
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Table 4.2: Generated Surrogate and CPT’s of Gevo ATJ 
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Figure 4.11: Distillation Curve of Shell SPK 
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is a synthetic parrafinic kerosene fuel it consists of very unique chemicals which may not 

be well represented by the chemical components that were used when testing this method. 

This lack of representation can be seen in the distillation curve where the generated mixture 

deviates significantly from the target fuel.  

Figures 4.12 and 4.13 show the NMR spectra comparison between the generated 

surrogate and the real fuel. There is almost an exact match in the 1H spectrum which shows 

that the components are still well suited for capturing many of the chemical properties. 

From the 13C spectra comparison in Figure 4.13, it is clear that the key chemical functional 

groups are matched as well in the carbon environments. There is a 0.32 % error in the 1H 

spectrum in Figure 4.12. The carbon spectrum was not as well reproduced as the 1H 

spectrum was but the level of similarity between them gives strong support for this 

surrogate to reproduce the chemical properties. The 13C spectrum had a 5.61 % error.  

These chemical properties were predicted using the same QSPR model as the 

previous fuels used and the results can be seen in Table 4.3. Table 4.3 also shows the 

formulated surrogate mixture and the CPT values of the target fuel for comparison. The 

DCN is almost identical between the two fuels which shows that this method once again 

captures the ignition properties of the target fuel from the chemical functional group 

distribution. The H/C ratio is matched to a difference of 0.042 which shows that the 

chemical functional groups of the surrogate are matching the chemical functional groups 

present in the target fuel. The MW of the target fuel is slightly lower than that of the 

surrogate mixture by 5 g/mol which shows that this method can even predict the physical 

properties of the fuels. Overall the CPT values matched within a 3.8 % error of the values 
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Figure 4.12: 1H NMR Spectra of Shell SPK 
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Figure 4.13: 13C NMR Spectra of Shell SPK 

 



www.manaraa.com

 

 

4
5
 

Table 4.3: Generated Surrogate and CPT’s of Shell SPK 
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for the real fuel. The comparison between the two NMR spectra and the distillation curve 

as well as the slight differences in CPT values show that this method can have sensitivity 

to the surrogate components which is to be expected as they should ideally be chosen to 

represent the fuel.  

Because of the sensitivity to the surrogate components that was seen when using 

this method on Shell SPK, the next fuel that was tested was very similar. Sasol IPK is a 

synthetic jet fuel that is actually formed from coal and as such is an iso-parrafinic kerosene 

fuel. It is very similar to the Shell SPK in that it exhibits very low preferential vaporization 

potential while having significantly more chemical diversity than the Gevo ATJ fuel that 

was tested previously. Figure 4.14 shows the distillation curve from the generated surrogate 

and it shows that it is consistently 15°C low in the light end compared to the real fuel.  

The 1H spectra that was generated matches the majority of the target spectra and is 

shown in Figure 4.15. The chemical functional groups are in the correct locations with the 

similar intensities which shows that the same chemical functional groups are present. In 

Figure 4.16 the 13C spectra comparison can be seen. The carbon spectrum of the real fuel 

is very broad with a large amount of diversity in the carbon structures present. The 

formulated surrogate matches the main functional group from the 13C spectrum but it does 

not capture the diversity of the other functional groups that are present. The predicted CPT 

values are shown in Table 4.4 to determine how much of an impact the fitting of the 

chemical functional group distribution can have on the CPT values of the surrogate.  
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Figure 4.14: Distillation Curve of Sasol IPK 
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Figure 4.15: 1H NMR Spectra of Sasol IPK 
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Figure 4.16: 13C NMR Spectra of Sasol IPK 
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Table 4.4: Generated Surrogate and CPT’s of Sasol IPK 
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From Table 4.4, it is clear that the DCN is not reproduced in the surrogate fuel which means 

that the mixtures could behave significantly differently in near limit conditions. The H/C 

ratio that is shown in Table 4.4 shows that the surrogate does match that of the target fuel 

to a difference of 0.032 and this is extremely useful in determining what the flame 

temperature of the fuel will be. The MW of the target fuel is also very close to the surrogate 

mixture with a 2.4 g/mol difference this allows the physical properties that are governed 

by the MW to be very similar. This lack of ability to capture the chemical functional groups, 

CPT’s, or the boiling characteristics is primarily due to the fact that none of the surrogate 

components that were used can capture both.  

Because of this, the algorithm was rerun using only the 1H NMR spectrum and 

distillation curve as it removes the constraints of the carbon structures which are so unique 

to Sasol IPK. The new distillation curve comparison can be seen in Figure 4.17 and it 

matches much better than the previous run with all temperatures being within 10°C of the 

target fuel. The new 1H spectrum is also a closer match than before with the location still 

being consistent and the relative intensities matching much better than previously.  

This new 1H spectrum can be seen in Figure 4.18 and it is clear from these two 

comparisons that the surrogate is much better at reproducing both the chemical functional 

groups and the distillation curve when not constrained by the carbon structures. Figure 4.19 

shows the 13C spectrum comparison which was not used as a surrogate formulation 

constraint. Even in this new comparison the most prominent functional groups and 

structures are the same between the two with slight differences in diversity and quantities.  
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Figure 4.17: Distillation Curve of Sasol IPK (1H Only) 
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Figure 4.18: 1H NMR Spectra of Sasol IPK (1H Only) 
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Figure 4.19: 13C NMR Spectra of Sasol IPK (1H Only) 
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Table 4.5: Generated Surrogate and CPT’s of Sasol IPK (1H Only) 
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Because the goal of the surrogate is to match all of the CPT values the predicted values are 

shown for the new mixture in Table 4.5. 

 It is clear from Tables 4.4 and 4.5 that the new surrogate fits the target fuels CPT 

values better than the previous surrogate which was constrained using the 13C NMR 

spectrum. The DCN value of the new mixture is substantially closer than it was before and 

it within 5.5 DCN of the target fuel. This value being much closer means that the near limit 

behaviors that are influenced by the ignition properties will be similar as well as the fact 

that the ignition properties themselves will be the same. Both the H/C ratio and the MW 

that are predicted for the new surrogate are similar to the previous run and the slight 

differences are more than satisfactory for a substantially closer value for the DCN. Overall 

the CPT values for the new run matched within a 17.5% error of the values for the real fuel. 

Even with the lack of ability to capture the chemical functional group distribution, 

distillation curve, and carbon structures in the surrogate components, a surrogate can be 

formulated that matches the CPT values, distillation curve and chemical functional group 

distribution by using only the 1H NMR spectrum and distillation curve.  

Because there is significant interest in producing surrogate fuels to simplify the 

extreme levels of chemical diversity in petroleum derived real fuels, the next set of fuels 

that were tested were Jet-A POSF 10325, JP-8 POSF 10264, and JP-5 POSF 10289. All 

three of these fuels are petroleum derived jet fuels and are widely used in many 

applications. Both Jet-A and JP-8 have a larger potential for preferential vaporization than 

JP-5 as it was formulated to have a substantially higher flash point, and this can be seen in 

Figure 2.2.  
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Figure 4.20: Distillation Curve of Jet-A 
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Figure 4.21: 1H NMR Spectra of Jet-A 
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Figure 4.22: 13C NMR Spectra of Jet-A 
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Table 4.6: Generated Surrogate and CPT’s of Jet-A 
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When formulating a surrogate for Jet-A POSF 10325, the results are shown in 

Figures 4.20-4.22 with the predicted CPT values in Table 4.6. From the 1H spectrum, the 

largest functional groups are reproduced with the appearance of substantial deviation from 

the aromatic groups and the aromatic CH group. This deviation is not nearly as significant 

as it appears because the simulated spectrum is much sharper and the area under the curve 

is equal for both. 

Similarly, in the 13C spectra shown in Figure 4.22, the key functional groups are 

all present with the biggest difference in the 3rd largest peak from the left. This peak is 

present in both but in the real fuel’s NMR spectrum it is actually a doublet and another 

singlet peak in close proximity and has the same integrated value as the singlet peak on the 

simulated spectrum. The distillation curve of the formulated surrogate reproduces that of 

the real fuel to within 10 degrees C which is within a believable uncertainty for the 

measured data from the distillation tests.  

Table 4.6 shows the formulated surrogate mixture for Jet-A as well as the CPT 

values for both the surrogate and real fuel. By comparing the predicted DCN of the 

surrogate to the DCN of the real fuel, there is a difference of 3.3 DCN which is close 

enough to be well within the limitations of the QSPR model to accurately predict. The H/C 

ratio and MW are also shown for both fuels in Table 4.6 and there is a difference of 0.073 

and 8.0 g/mol between the two. While this is not quite as well of a match as hoped for, with 

a max of 6.6% error, the nature of the extreme chemical diversity is influencing the real 

fuel values. Because of this chemical diversity, the surrogate can approximate the CPT 

values for the target fuel but they are not as precise of a match as the alternative fuels. 
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Figure 4.23: 1H NMR Spectra of JP8 
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Figure 4.24: 13C NMR Spectra of JP8 
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Figure 4.25: Distillation Curve of JP8 
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Table 4.7: Generated Surrogate and CPT’s of JP8 
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Just as with the Jet-A, the results for JP-8 are shown in Figures 4.23-4.25 and the 

predicted values for the various CPT’s are shown in Table 4.7. The 1H NMR spectra 

comparison between the formulated surrogate and the real fuel that is shown in Figure 4.23 

accounts for all of the key functional group species that are present. There is a similar 

amount of CH3, CH2, CH, and aromatic groups in all once the resolution of the real fuel’s 

NMR measurements is taken into account.  

The real fuel’s NMR spectrum is by nature substantially broader than that of the 

simulated spectrum because the NMR records the real-world response of the nuclei to the 

electromagnetic field. In Figure 4.24 the 13C NMR comparison can be seen and just as the 

NMR spectrum is broader in the proton domain, it is broader in the 13C domain as well for 

the real fuels. The formulated surrogate does contain the same chemical functional groups 

in similar quantities to that of the real fuel in the standard NMR spectrum and the 

inconsistencies can be explained by the broader resolution of the real-world measurements.  

 The distillation curve for the formulated surrogate is shown in Figure 4.25 along 

with the 4 known measurements of the target fuel. The distillation curve of the surrogate 

follows the trend of the target fuel and is within 15 degrees C of the real fuel. This deviation 

from the real fuel could be due to errors in the measurements of the real fuel, the fact that 

the bubble point calculation overestimates the real boiling temperature, or the chemical 

diversity in the real fuel may not be entirely accounted for in the surrogate components.  

Table 4.7 shows the surrogate mixture as well as the various CPT’s for both the real 

and surrogate fuels. Comparing the DCN values between the two shows that there is a 5 

DCN difference between the two which falls within an acceptable range of the target 
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because of the limits of how accurately the QSPR can predict. The H/C ratio and MW are 

also shown in Table 4.7 and are both within an acceptable range similar to the Jet-A that 

was run previously. Overall the CPT values matched within a 10.3% error of the values for 

the real fuel. Because of the large chemical diversity, the chemical properties of the 

surrogate will only be able to give a good approximation for the real fuel. 

The last petroleum derived fuel this method was used to determine a surrogate 

mixture for is JP-5 POSF 10289. JP-5 is a real-world fuel that is like Jet-A and JP-8 but 

has a substantially higher flash point and consequently features higher temperatures in the 

beginning of the distillation curve. JP-5 has a large amount of chemical diversity since it 

is refined from petroleum products. The large amount of chemical diversity that comes 

from petroleum products is limited in JP-5 because it is specifically created to have a higher 

flash point than other jet fuels. This higher flash point is achieved by boiling off the light 

end of the fuel which leaves the heavier molecules behind and these molecules are less 

likely to spontaneously react as they are less volatile. The distillation curve for the 

surrogate that was formulated for JP-5 is shown in Figure 4.26 along with the known 

boiling temperatures for the real fuel. Because the light end of this fuel is boiled off to 

create a higher flash point, the distillation curve begins at a higher temperature which is 

consistent with the real fuel and the surrogate fuel in Figure 4.26. The distillation curve of 

the surrogate reproduces that of the target fuel for the T10, T20, and T50 temperatures very 

well but deviates significantly for the T90 value and these can be seen in Table 4.8. The 

first 3 temperatures all fall within 6 degrees Celsius while the T90 difference is 25 degrees 

Celsius. This large difference could be due to the lack of heavier molecules than 

hexadecane and may be a factor of the sensitivity to the surrogate components.  
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Figure 4.26: Distillation Curve of JP5 
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Figure 4.27: 1H NMR Spectra of JP5 
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The 1H NMR spectra comparison between the generated surrogate and JP-5 is 

shown in Figure 4.27. From this comparison, the CH2 and CH3 peaks have very similar 

intensities and are the located in the correct location to confirm that they are the same 

chemical functional groups. The CH peak has a very low intensity relative to the CH2 and 

CH3 groups which is consistent between the two spectra. The aromatics functional group 

is also in very low quantity in both spectra which means that all functional groups are 

consistent between the two spectra. When considering the 13C spectra that are shown in 

Figure 4.28, the largest four peaks are the same in both the surrogate and the target fuel. 

These four peaks are in the location that is consistent with n-alkanes but the quantities that 

are present lead to the belief that the differences between this surrogate and real-fuel 

combination are due to the sensitivity to the surrogate components. This sensitivity to 

surrogate components can be seen further in Table 4.8 where the CPT values are predicted.  

The CPT values that are shown in Table 4.8 are the DCN, MW, and H/C ratio of 

both the target fuel and the formulated surrogate mixture. Overall the CPT values matched 

within a 46.5 error of the values for the real fuel. The surrogate model failed to adequately 

predict the DCN of the real fuel and the two have a difference of 19 DCN. This shows that 

the surrogate cannot predict the ignition behaviors of the JP-5, this is because JP-5 was 

specifically formulated to have very unique ignition behaviors. These unique ignition 

behaviors are a result of the desire for a higher flash point for fuel and the surrogate 

components may not be optimally selected to account for this. Excluding the DCN, the 

highest error was the H/C ratio with a 8.27% error. The H/C ratio prediction for the 

surrogate model also varies from the target fuels measured value by 0.157 which is the 

largest difference out of all of the fuels that were tested but this could also stem from the 
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Figure 4.28: 13C NMR Spectra of JP5 
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Table 4.8: Generated Surrogate and CPT’s of JP5 

 



www.manaraa.com

 

73 
 

desire for a high flash point in the real fuel. The MW for the surrogate mixture is very well 

fitted to the target fuel with a difference of 2.3 g/mol which shows that the many of the 

physical properties will be very similar. The unique properties of JP-5 POSF 10289 and 

the sensitivity to the choice of surrogate components shows that for this fuel, an acceptable 

surrogate could not be found with these components. 

The last two surrogates that were formulated to test this method were for HRJ 

Camelina, POSF 7720, and HRJ Tallow, POSF 6308. These two fuels are both alternative 

jet fuels that are created from various fats and oils. Both fuels exhibit much higher potential 

for preferential vaporization than any of the other fuels that have been tested; this can be 

seen in Figures 2.1 and 2.2. Because these fuels are both processed using specific chemical 

reaction methods, they have much less chemical diversity than the petroleum fuels that 

were previously run. These fuels may not be as diverse in terms of chemical species, but 

they do have unique molecular structures as they are formed from fats and oils stocks.[4]  

HRJ Tallow POSF 6308 was tested first as it has less preferential vaporization 

potential and a similar amount of chemical diversity. HRJ Tallow was used to formulate 

the surrogate that is shown in Figures 4.29-4.31. The 1H spectra comparison is shown in 

Figure 4.29 and the surrogate matches the target fuel very well. The CH2 and CH3 

functional groups are the dominant peaks in both and they appear in very similar relative 

intensities to each other. The functional groups that are present in substantially smaller 

quantities in the generated surrogate are in low enough quantities and in the proper location 

to be included with the two major peaks in the measured spectrum due to the resolution 

issues.  
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Figure 4.29: 1H NMR Spectra of HRJ Tallow 
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Figure 4.30: 13C NMR Spectra of HRJ Tallow 
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Figure 4.31: Distillation Curve of HRJ Tallow 
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From the 13C spectra comparison that is shown in Figure 4.30 there is a substantial 

diversity in the carbon structures that is not truly captured by the formulated surrogate. The 

surrogate does contain for the two largest peaks in the real fuel and it deals with the carbon 

diversity by lumping most of it into a two CH2 peak that is in the region. There is a peak, 

located at 54 ppm, in the generated surrogate but not from the that is from the CH2 groups 

in the highly branched iso-alkane surrogate components. If there were more surrogate 

components that were varying levels of branched alkanes than the diversity in the carbon 

structures may have been reproduced without any extra peaks on the spectrum.  

Figure 4.31 shows the distillation curve for this surrogate as well as the known 

values for the HRJ Tallow fuel. The distillation curve of this surrogate mixture matches all 

of the known points very well with the only difference that is larger than 2 degrees Celsius 

being at the T90 point which had a difference of 8 degrees. This is very much within the 

possible error for the real-world distillation experiments and therefor considered 

successful. 

Table 4.9 shows the formulated surrogate as well as the predicted CPT values and 

how they compare to those of the target fuel. The CPT values are predicted using a QSPR 

regression model method that was previously used to predict surrogate fuels. The predicted 

DCN of the surrogate is almost 8 DCN higher than that of the target fuel. This is largely 

due to the QSPR that was used predicting several of the key surrogate components 7 DCN 

higher than their actual values. The components iC12, iC16, and nC10 are all predicted 

between 5 and 8 DCN high and these make up a sizeable portion of this surrogate mixture. 

The H/C ratio predicted is only 0.011 higher than that of the target fuel which is a sign that 

this is a valid surrogate for HRJ Tallow. The MW is also only 0.3 g/mol higher than that 
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Table 4.9: Generated Surrogate and CPT’s of HRJ Tallow 
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of the target which shows that this surrogate does fit all of the CPT’s that currently have 

the capability of being predicted within a 13.5% error. The density which was compared 

as an extra validation point was also very close to that of the target fuel. This data shows 

that this surrogate is indeed a good fit for HRJ Tallow as it reproduces all of the CPT’s and 

the density. 

HRJ Camelina has a much higher potential for preferential vaporization but the 

chemical structures are very similar to those found in HRJ Tallow. Using this method to 

generate a surrogate for HRJ Camelina POSF 7720 yields the results shown in Figures 

4.32-4.34 and Table 4.10. The 1H spectrum is very well reproduced here as well and can 

be seen in Figure 4.32. In this figure, the chemical functional groups have the same relative 

intensities as well as the same location which shows that this surrogate successfully 

captured all of the chemical functional groups that are accounted for in the 1H spectrum.  

Figure 4.33 shows the simulated 13C NMR spectrum of the formulated surrogate 

and compares it with that of the target fuel. Similar to several of the other fuels tested in 

this paper, the carbon spectrum has a lot more diversity in the chemical functional groups 

than what is represented in the surrogate components. This difference in chemical diversity 

causes many of these carbon structures to be lumped into the functional groups that are 

available. This is a great example of the goal of this method which is to simplify the 

chemical diversity and account for the preferential vaporization of the fuel.  

The distillation curve can be seen in Figure 4.34 and it is also compared to the 

known temperatures for the target fuel. All of the temperatures are reproduced to within 6 

degrees Celsius which is well within the acceptable error values of the real fuel. The 
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Figure 4.32: 1H NMR Spectra of HRJ Camelina 
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Figure 4.33: 13C NMR Spectra of HRJ Camelina 
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Figure 4.34: Distillation Curve of HRJ Camelina 
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Table 4.10: Generated Surrogate and CPT’s of HRJ Camelina 
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surrogate also follows the trend of the real fuel very well and is considered a successful 

reproduction because of how close the temperatures are to each other. Table 4.10 shows 

the predicted CPT values for this surrogate mixture as well as the known values for the real 

fuel. The DCN is predicted to be within 1 DCN value of the target fuel and the MW is 

predicted within 2 g/mol as well. The H/C ratio has the largest difference with a difference 

of 0.04. These values show that this surrogate properly matches the CPT values for the real 

fuel within a 1.8% error and that this is indeed a valid surrogate. 
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CHAPTER 5 

CONCLUSION

The goal of surrogate fuels is to simplify the extremely complex chemistry that 

governs real fuel processes. Typically, surrogate fuels have been formulated using a CPT 

approach, but recently experiments have shown that CPT’s are governed by the chemical 

functional group distribution of the real fuels.[10] This realization led to the creation of a 

new method to formulate surrogate fuels from the chemical functional group distribution 

and the distillation curve that is not constrained to the empirical testing. This hypothesis 

was tested using NMR spectra to measure the chemical functional group distribution of the 

real fuels and an optimization algorithm to reproduce the spectra, with the results being 

shown previously.  

The fuels that were tested in this work are a variety of alternative jet fuels along 

with petroleum derived fuels. These fuels not only contained varying levels of chemical 

diversity but also varying amounts of preferential vaporization potential. Using the NMR 

along with the distillation curve produced very good surrogate mixtures for their respective 

target fuels that reproduced the values within 13% error when not considering JP5. The 

surrogate fuels produced using this method were used in a QSPR regression model to 

predict the CPT values of the surrogates that were then compared to the target fuels. 

Because the DCN was predicted using the QSPR method, the limitations of the QSPR 
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effect the error for the DCN. When not considering DCN, the highest error for the H/C 

ratio was 3.7% and for the MW it was 5%.  

Because the alternative fuels were reconstructed better, the highest errors for these 

was 1.9% for the H/C ratio and 3.8% for the MW. These results showed that this method 

of surrogate formulation does work and that the chemical functional group distribution 

along with the distillation curve is sufficient to constrain a surrogate formulation method.  

The surrogate components that were used in this testing were selected due to their 

abundance in petroleum derived jet fuels and their widely understood kinetic models. This 

allows for the development of a highly reduced kinetic model for the target fuel based on 

these components. This method did reveal that there is a significant sensitivity to what 

surrogate components are used and they should ideally be tailored to suit the target fuel. 

This sensitivity could be mitigated in some cases by only considering the 1H NMR 

spectrum and distillation curve at cost to precision of the surrogate.  

These results showed that alternative fuels can be easily characterized using this 

method and validates that the surrogate will reproduce the chemical and physical properties 

of a target fuel. When considering the petroleum derived fuels, the results were good 

estimates of the chemical and mechanical properties, but the extreme chemical diversity 

caused the results to not be as precise as the alternative fuels. This reveals a necessity to 

further categorize the roles surrogate components can play on the validity of the surrogate 

mixture as well as a need to consider increasing the total number of components overall or 

in certain functional group areas. 
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APPENDIX A 

OPTIMIZATION CODE 
clear, clc 

%% Inputs 

chems= 

{'nC7';'nC8';'nC10';'nC12';'nC14';'nC16';'iC8';'iC12';'iC16';'Toluene';'nPropylBenzene';'13

5TMB';'MCH';'BCH'}; 

Ho=xlsread('H5729.xlsx'); %------ This is the 1H NMR Spectrum of the Real Fuel 

Co=xlsread('C5729.xlsx'); %------ This is the 13C NMR Spectrum of the Real Fuel 

  

Ptot=100; %----------------------- This is the Atmospheric Pressure in kPa 

T0=298; %-------------------------- This is the Atmospheric Temperature in K 

%Distillation Temperatures ------- need to code to read from file? 

T10a=162; 

T20a=164; 

T50a=169; 

T90a=185; 

iter=1; 

d=0.05; %------------------------ This is the distillation percentage 

% moles0=[1 9 11 12 10 1 5 19 6 1 5 18 0 0]; 

% moles0matrix=[0 0 0 0 0 0 0 80 20 0 0 0]; 

moles0matrix=randi([0 iter],[iter,length(chems)]); 

%% Antoine Table 

% this section creates a table(Antoine_Table) in Matlab which contains the 

% Antoine Values for Distillation (A,B,and C) of the chemicals that are 

% selected 

[Antoine_Values,Antoine_Text]=xlsread('Antoine_Coefficients'); 

A=Antoine_Values(1,:)'; 

B=Antoine_Values(2,:)'; 

C=Antoine_Values(3,:)'; 

Antoine_Tablefull=table(A,B,C,'RowNames',Antoine_Text'); 

Antoine_Table=Antoine_Tablefull(chems,:); 

A=Antoine_Table{:,1}; 

B=Antoine_Table{:,2}; 

C=Antoine_Table{:,3}; 

clear Antoine_Tablefull Antoine_Values Antoine_Text 

  

%% find distillation percentages and locations 

% This section creates the distilled percents and the locations in the 

% Temperature matrix (T) to compare to the actual values 

% (T10a,T20a,T50a,T90a) 
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del=0:d:1; 

[~,d10]=min(abs(del-.1)); 

[~,d20]=min(abs(del-.2)); 

[~,d50]=min(abs(del-.5)); 

[~,d90]=min(abs(del-.9)); 

Tempsa=[T10a;T20a;T50a;T90a]; 

Pv10=exp(A+(B./(T10a+273+C)))'; 

Pv20=exp(A+(B./(T20a+273+C)))'; 

Pv50=exp(A+(B./(T50a+C+273)))'; 

Pv90=exp(A+(B./(T90a+C+273)))'; 

%% Preparing the 1H NMR Spectrum 

HSpec=zeros(32768,2); 

[~,xstart]=min(abs(Ho(:,1)));%-0.100025)); %------------------------Figure out how to 

remove -.100025 

for i=1:length(HSpec) 

    HSpec(i,2)=Ho(xstart-i+1,2); 

    a=abs(HSpec(i,2)); 

    b=HSpec(i,2); 

    if a<100 

        HSpec(i,2)=0; 

    elseif b<0 

        HSpec(i,2)=0; 

    end 

end 

clear Ho 

Ho=(HSpec/max(cumtrapz(HSpec)))'; 

HIo=cumtrapz(Ho); 

HIo=HIo/max(HIo); 

%% Preparing the 13C NMR Spectrum 

[~,xstop]=min(abs(Co(:,1)-0)); 

shift=length(Co(:,2))/2-xstop; 

shift=round(shift,0); 

CSpec=zeros(16384,2); 

% Removing the solvent (The X axis is backwards) 

[~,solventstart]=min(abs(Co(:,1)-76)); % Identifies where the solvent starts (This is 

CDCL3 so triple peak) 

[~,solventstop]=min(abs(Co(:,1)-78));  % Identifies where the solvent stops 

for i=solventstop:solventstart 

    Co(i,2)=0; 

end 

% The solvent has been Removed in the for loop above this 

CS=zeros(1,length(Co)); 

for i=1:xstop 

   CS(i+(length(CS)-xstop))=Co(i,2); 

end 

for i=1:length(CSpec) 
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       CSpec(i,1)=Co(2*i,1); 

       CSpec(i,2)=CS(2*i); 

end 

clear Co 

cox=CSpec(:,1); 

Co=CSpec(:,2)'; 

Co(Co<1000)=0; 

CIo=cumtrapz(Co); 

CIo=CIo/max(CIo); 

clear HSpec CSpec solventstart solventstop xstart xstop xv Tempscos shift 

  

%% Preparing the Individual Spectra 

for i=1:length(chems) 

    Hfilenames{i}=strcat('H',chems{i},'.jdx');     

    Hf(i)=jcampread(Hfilenames{i}); 

    HF(i,:)=Hf(i).Blocks.YData; 

    Cfilenames{i}=strcat('C',chems{i},'.jdx');     

    Cf(i)=jcampread(Cfilenames{i}); 

    CF(i,:)=Cf(i).Blocks.YData; 

end 

  

  

T=T0:600; 

Pvapa=exp(A+B./(T+C)); 

  

  

G=@(moles)NMR_Optimizer(moles,chems,d,HF,CF,CIo,HIo,Ptot,Pvapa,T10a,T20a,T50

a,T90a,T0); 

[m,~]=size(moles0matrix); 

for zz=1:m 

    moles0(1,:)=moles0matrix(zz,:); 

    

mix(zz,:)=fminimax(G,moles0,[],[],[],[],zeros(1,length(chems)),100*ones(1,length(chems

)),[],optimoptions('fminimax','MaxFunctionEvaluations',10000)); 

    Gvals(zz,:)=G(mix(zz,:)); 

end 

  

[aa,bb]=min(Gvals); 

moles1=mix(bb,:); 

x=moles1/sum(moles1); 

T=T0:318; 

mol=zeros(length(T),length(chems)); 

Pvap=exp(A+(B./(T+C)))'; 

for j=1:length(T) 

    for i=1:length(chems) 

        if j==1 
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            mol(1,:)=x; 

        else 

            mol(j,i)=mol(j-1,i)-d*xg(j-1,i); 

        end 

    end 

     

    xl=mol./sum(mol,2); 

    Ppx=Pvap.*xl; 

    Ppxtot=sum(Ppx,2); 

    xg=Ppx./Ppxtot; 

    Res=(Ptot-Ppxtot).^2; 

end 

for k=1:length(T) 

countr=0; 

a=Res(k); 

    while a>0.01 && countr<8000 

        Pvap=exp(A+(B./(T+C)))'; 

        for j=1:length(T) 

            for i=1:length(chems) 

                if j==1 

                    mol(1,:)=x; 

                else 

                    mol(j,i)=mol(j-1,i)-d*xg(j-1,i); 

                end 

                bb=mol(j,i); 

                if bb<=0 

                    mol(j,i)=0; 

                end 

            end 

            xl=mol./sum(mol,2); 

            Ppx=Pvap.*xl; 

            Ppxtot=sum(Ppx,2); 

            xg=Ppx./Ppxtot; 

            Res=(Ptot-Ppxtot).^2; 

        end     

    atry=Res(k); 

    if atry<=a 

        T(k)=T(k)+0.1; 

    elseif atry>a 

        T(k)=T(k)-0.1; 

    end 

    a=atry; 

    countr=countr+1; 

    end 

end 

T1=T(d10)-273 
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T2=T(d20)-273 

T3=T(d50)-273 

T4=T(d90)-273 

figure,plot(del,T-273,'LineWidth',2) 

hold on 

plot(0.1,Tempsa(1),'*') 

% plot(0.2,Tempsa(2),'*') 

plot(0.5,Tempsa(3),'*') 

plot(0.9,Tempsa(4),'*') 

box on 

xlabel('Distilled Percentage','FontSize',16) 

ylabel('Temperature (C)','FontSize',16) 

title('5729 Distillation Curve','FontSize',20) 

% legend('Generated Mixture','T10 actual','T20 actual','T50 actual','T90 

actual','Location','northwest') 

legend('Generated Mixture','T10 actual','T50 actual','T90 actual','Location','northwest') 

  

HSpectraSolutiontry=x*HF; 

HSpectraSolutiontry=HSpectraSolutiontry/max(cumtrapz(HSpectraSolutiontry)); 

HSpectraSolutiontryI=cumtrapz(HSpectraSolutiontry); 

  

CSpectraSolutiontry=x*CF; 

CSpectraSolutiontry=CSpectraSolutiontry/max(cumtrapz(CSpectraSolutiontry)); 

CSpectraSolutiontryI=cumtrapz(CSpectraSolutiontry); 

  

Ho=Ho/max(cumtrapz(Ho)); 

HoI=cumtrapz(Ho); 

  

Co=Co/max(cumtrapz(Co)); 

CoI=cumtrapz(Co); 

  

Hxx=Hf(1).Blocks.XData; 

Cxx=Cf(1).Blocks.XData; 

  

  

figure,plot(Hxx,2.3*HSpectraSolutiontry,'LineWidth',2) 

hold on 

plot(Hxx,0.5*0.8*1.2*24*Ho+0.06,'LineWidth',2) 

box on 

xlabel('Chemical Shift(PPM)','FontSize',16) 

ylabel('Intensity (a.u.)','FontSize',16) 

legend('Generated Spectra','POSF 5729') 

title('1H POSF 5729','FontSize',20) 

  

figure,plot(Cxx,CSpectraSolutiontry,'LineWidth',2) 

hold on 
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plot(Cxx,0.1*1.6*2*Co+0.08,'LineWidth',2) 

box on 

xlabel('Chemical Shift(PPM)','FontSize',16) 

ylabel('Intensity (a.u.)','FontSize',16) 

legend('Generated Spectra','POSF 5729') 

title('13C POSF 5729','FontSize',20) 

  

figure,plot(Hxx,HSpectraSolutiontryI,'LineWidth',2) 

hold on 

plot(Hxx,HoI,'--','LineWidth',2) 

box on 

xlabel('Chemical Shift(PPM)','FontSize',16) 

ylabel('Intensity (a.u.)','FontSize',16) 

legend('Generated Spectra','POSF 5729') 

title('1H POSF 5729 Integrated','FontSize',20) 

  

figure,plot(Cxx,CSpectraSolutiontryI,'LineWidth',2) 

hold on 

plot(Cxx,CoI,'--','LineWidth',2) 

box on 

xlabel('Chemical Shift(PPM)','FontSize',16) 

ylabel('Intensity (a.u.)','FontSize',16) 

legend('Generated Spectra','POSF 5729') 

title('13C POSF 5729 Integrated','FontSize',20) 

  

function 

[G]=NMR_Optimizer(moles,chems,d,HF,CF,CIo,HIo,Ptot,Pvapa,T10a,T20a,T50a,T90a,

T0) 

    MOLES=zeros(1/d,length(chems)); 

    kk=zeros(1/d,length(Pvapa)); 

    minkk=zeros(1/d,1); 

    Pvap_i=zeros(1/d,1); 

    Pvap=zeros(1/d,length(chems)); 

    xg=zeros(1/d,length(chems)); 

    for j=1:1/d 

        if j==1 

            MOLES(1,:)=moles/sum(moles); 

        else 

            MOLES(j,:)=MOLES(j-1,:)-d*xg(j-1,:); 

        end 

        MOLES(j,MOLES(j,:)<0)=0; 

        kk(j,:)= abs((MOLES(j,:)/sum(MOLES(j,:)))*Pvapa-Ptot); 

        minkk(j)= min(kk(j,:)); 

        Pvap_i(j)= find(kk(j,:)==minkk(j)); 

        Pvap(j,:)= Pvapa(:,Pvap_i(j)); 

        xg(j,:)= ((MOLES(j,:).*Pvap(j,:))/sum(MOLES(j,:)*Pvap(j,:)')); 
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    end 

    T10=T0+Pvap_i(3)-1-273; 

    T20=T0+Pvap_i(5)-1-273; 

    T50=T0+Pvap_i(11)-1-273; 

    T90=T0+Pvap_i(19)-1-273; 

     

    x=moles/sum(moles); 

    H=x*HF; 

    C=x*CF; 

    HI=cumtrapz(H); 

    HI=HI/max(HI); 

    CI=cumtrapz(C); 

    CI=CI/max(CI); 

%     eq1=sum(abs(HI-HIo)); 

%     eq2=sum(abs(CI-CIo)); 

    eq1=abs(HIo-HI)*HIo'; 

    eq2=abs(CIo-CI)*CIo'; 

    eq3=(T10-T10a)/T10a*1000; 

    eq4=(T20-T20a)/T20a*1000; 

    eq5=(T50-T50a)/T50a*1000; 

    eq6=(T90-T90a)/T90a*1000; 

    G=abs(eq1)+abs(eq2)+abs(eq3)+abs(eq4)+abs(eq5)+abs(eq6); 

end 

 


